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: DEVELOPMENTS IN EFFICIENCY ANALYSIS

EXECUTIVE SUMMARY

Requirement:

The US Army Research Institute conducts research on manpower,
personnel, and training issues of interest to the Army. Recently
there has been a need for basic research into objective ways of
measuring and evaluating organizational performance efficiency

under different pclicies and resource allocation procedures.

Procecure:

Buiiding upon their previous theoretical work in mathematical
programming. the authors have generalized the concept of Data
Envelopment Analysis to include new theoretical characterizations

of empirical production functions.

Findings:

The developments show how a Pareto-Optimal frontier production
function can be developed, and such problems as economies of scaie,
i1sotonicity and non-concavity, discretionary and non-discretionary
inputs, and Cobb-Douglas multiplicative functional problems can be
solved. Also, simulations are performed which demonstrate that DEA
methodology 1is not only superior to other methods (ratioco ana.ysis
and regression analysis) for identifying inefficiencies but alcsco
for locating their sources and estimating their magnitude in

particular decision making units.

Utilization of Findings:

Methodologies developed here provide new approaches for

measuring the efficiency and productivity of organizations that

have multiple 1inputs and outputs. Tnis methodology cou-d be
applied to resource allocation and evaluation problemnms in
recruiting, training, unit performance, equipment maintenance,
personnel management, logistic management, and weapon system

- development.
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I. INTRODUCTION

Economists and management scientists have long been interested
in production functions, or the relationship of resources to
organizational outputs. Data envelopment analysis (DEA), developed

by Charnes, Cooper,

for meas

and Rhodes (1978) provides a new methodology

uring the technical efficiency of organizations that use

multiple inputs to produce multiple outputs,

applied research

Data

chat it

of organ

envelopment

provides a n

izations 1in

analysis has contributed to both basic and

in efficiency analysis. It is basic in the sense

ew mathematical model for describing behavior

the transforming 1inputs to outputs. It 1is

applied since it relies upon empirical data with direct
impliications for identifying specific inefficliencies and
redirecting management effort. It 1s 1deally suited for the

evaluation of public¢ sector institutions, because it can deal with

multiple outputs and

has

does not require information on prices. DEA

been applied to education (Bessent, 1983), health care

(Sherman, 1981), Navy recruiting (Lewin and Morey, 1980), criminal

court

systems

evaluation (Barr, 198

(Lewin and Morey, 1984), and computer software

3).

The following sections of this report describe basic research

that has extended and improved the mathematical modeis available
for analyzing organizational efficiency. SectioniIl provides a new
method of data envelopment analysis methodology that is a

substantial improveme

permits the analysis

nt over the original approach. This new model

of the rates of change of individual outputs

with respect to change 1n specific inputs. Further, the new mode.

improves the computational algorithm by only searching the optimal

points

in the solution space.

Section I11I provides a mulitiplicative efficiency Todes .

Previous

formulations had been sensitive to the units c?

measurement. Here,

a simple change s formulated that preserves

the desirability of the multiplicative formatl and creates invariant

measures

-
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The last section compares DEA, ratio, and regresion analysis :

through investigation of an artificial data base. The results -
favor DEA not only for identifying inefficiencies but also locating o
their sources and amounts. The advantage of DEA 1is that it 3

performs a separate optimization for each observation and does not L

attempt to capture a great varieties of behaviors in a smcoth anga

simple functional form.

Efficiency analysis as developed and extended in this repor:,

LR BRI
.

contains substantial potential for improving the resocurce
allocation and evaluation process within the Army. An applicaticon »

has already been made to recruiting research management (Charnes,

1982). Additional areas that could benefit from efficiency i
analysis include training unit performance, weapon system -
development, equipment maintenance, logistic management, anda -~

personnel management. 2
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I1I. PARETO OPTIMALITY, EFFICIENCY ANALYSIS AND EMPIRICAL PRODUCTION FUNCTIONS

Classically, the economic theory of production is heavily based
on the conceptual use of the Pareto-efficiency (or Pareto-optimal) frontier
of production possibility sets to define "the" production function. The
work of R. Shephard[18], [19] under severe restrictions on the mathematical
structure of production possibility sets and cost relations, developed an

elegant "transform” theory between production aspects and cost aspects [10].

T T T T T e A P TR v v~
'
'
.
A

This was applied to various classes of explicitly given parametric functional

>
>
-

forms and problems of statistical estimation of parameters from data were
considered in classical statistical contexts especially by successors
such as R. Frisch, S. Afriat, D. Aigner, F. Forsund [1, 2, 16].

These efforts were almost exclusively for single output functions.

M.J. Farrell in [14], seeking to ¢iscntangle prices or costs from
"technical" aspects of production, as well as to provide a more meaningful
technical setting to statistical and empirical aspects of production,
defined (for the single output case) a measure of "technical efficiency”
of observed production units relative to the total units observed assuming
that the production process of inputs to output conversion was linear and of

constant returns to scale.

Building on the unit-by-unit evaluations of Farrell and the
engineering ratio idea of efficiency measure for a single input and output,

efficiency analysis in its managerial aspects and its constructible

extensions to multi-input, multi-output situations was initiated by Charnes,
- Cooper and Rhodes in [8], [ 9]. Subsequent extensions and elaborations
E by the former pair with other students and colleagues were made in [ 7 ],
! [11], [12) . . . with more attention to classical economic aspects and to
| .
!
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the production function side of the mathematical duality structure and

Data Envelopment Analysis first discovered in the CCR work. The CCR ratio

Y
|
d
. 1
-:‘
"l
N
5
o
-
h.

measures and the variants of Farrell, Shephard, Fire, Banker, et al. require,
however, non-Archimedean constructs for rigorous theory and usage. Their
solution methods also do not easily provide important needed properties of
their associated empirical production functions.

Thus, in this paper we introduce as basic the idea of Pareto
optimality with respect to an empirically defined production possibility set.
We characterize the mathematical structures permitted under our minimal
assumptions and contrast these with others' work. Properties such as
isotonicity, non-concavity, economies of scale, piece-wise }inearity, Cobb-
Douglas forms, discretionary and non-discretionary inputs are treated through
a new Data Envelopment Analysis method and informatics which permits a
constructive development of an empirical production function and its partial
derivatives without loss of efficiency analysis or use of non-Archimedean

field extensions.
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EMPIRICAL FUNCTION SETTING AND GENERATION

v
a2
‘s,

By an “empirical" function we shall mean a vector function whose

:

values are known at a finite number of points and whose values at other
points in its domain are given by linear (usually convex) combination:
of values at known points. The points in the domain are "inputs,"” the
component values of the vector function "outputs.” We shall assume that
inputs are so chosen that convex combinations of input values for each
input are meaningful input values. We assume this for output values as well.
In efficiency analysis, observations are generated by a finite
number of "DMU"s, or "productive," or 'response" units, all of which have
the same inputs and outputs. A relative efficiency rating is to be
obtained for each unit. Typically, observations over time will be made
of each unit and the results of efficiency analyses will be employed to

assist in managing each of the units. We assume n units, s outputs and

m inputs. The values are to be non-negative (sometimes positive) numbers.

.
.
X
d
r
r
-
\
.

‘a4 4

- -

U O e G AR

LN T NI U T P Y VO W U D O

catatmra e R T




LT T T, v r T T YT MR A g i ar e rul g s g oy R B et @ 4 Gl Ao Sl St e Sal B ASiit - Sihe SAs Jetin Jan e San ane e g )
S B - <
. N . AL ENCR N R PN A e e

e
i

y
A HYPOGRAPH EMPIRICAL PRODUCTION POSSIBILITY SET !
Given the (empirical) points (XJ,YJ), j=ls...,n with (mx1) "input"
vectors Xj 2 0 and (sx1) "output" vectors Yj 2 0, we define the "empirica) J
|
production set" PE to be the convex huli of these points i.e. g
n n -
(2.1) PE b {{x,y) : x = 2: Xjuj y Y = 2: Y.u. , Vuj =20, Z:LJ =1 y
j=1 j=1 3 j s
We extend it to our "empirical production possibility set” QE by adding to E
PE all points with inputs in PE and outputs not greater than some output .
B
in Ppi.e B
(2.2) Q 2 {{x,y) : x = x , y <y for some (x,y) ¢ PE} _
Note that QE is contained in (e.g. is smaller than) every production
possibility set heretofore employed, i.e. those studied by Farrell [14], _
Shephard [19], Banker, Charnes and Cooper [3], Fare, et al. [13], etc. The E
Farrell, Shephard, Fdre sets are (truncated) cones; the BCC set (when not -
also a cone) adds to QE the set
DX 2 X =y x,y) ¢ 0} ) B
{xy) © x2x .y =y for some (x,y) = Q'. n
These relations may be visualized in the schematic plot of
v Figure 1: , -
/
" y ! i
N .
L
' ! | S - -
'
, 7 "
- 1 B O e
- l
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where QE = PE U A, the 8BC set is QE U B, and the Farrell, Shephard, Fire
set is QE UBUC.

Let PE , Qg denote the sets corresponding to PE and QE when only the
output y, is the ordinate. Evidently a frontier function fa(x) is determined

by
- n
(2.3) fn(x) = max y, for (x,yn) e Q¢
Then,

Theorem 0: Qg is the hypograph of f&(x) over {x : (x,y) € QE}

Proof: The hypograph H& of f&(x) is the set

Hy 8 {(y,) 1y, <£,(x), (x,y) e Q) .

Let DE denote {x : (x,y) € Q¢}. It is the domain (the input set)

of our empirical frontier functions.

Theorem 1: fn(x) is a concave, piecewise linear function on DE.
Proof: A necessary and sufficient condition for fd(x) to be concave is
that its hypograph is a convex set (¢f. Rockefellar [17], or Fenchel [15]).

The piecewise linearity also follows from the construction of QE by all convex

combinations of the empirical points (Xj,Yj), j=1l,...,n.
]

We observe explicitly further that no use whatever has been made of

non-negativity of input and output values in the sets, functions or proof

of Theorems 0 and 1. Therefore, they hold without this restriction--a

) fact we shall employ elsewhere.

Also, no assumptions have been made about the properties of any

P 4 BN

underlying function, or function hypograph, from which the (Xj.Yj) of our :
l empirical construct may be considered samples. Theorem 1 shows, therefore, Z
: that any empirical (maximum) frontier function is the "concave cap" function -

of its graph. Zj
| g R
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THE EMPIRICAL PARETO-OPTIMAL PRODUCTION FUNCTION
A Pareto-optimum for a finite set of functions gl(x),...,gK(x) is
a point x* such that there is no other point x in the domain of these

functions such that

(3.1) gk(x) < gk(x*) » k=1,...,K

with at least one strict inequality. Charnes and Cooper in [5 ], Chapter IX,
showed that x* is Pareto-optimal iff x* is an optimal solution to the

mathematical (goal) program
K

(3.2) min gk(x) subject to gk(x) < gk(x*) , k=1,...,K
k=1

This was employed by Ben-Israel, Ben-Tal and Charnes in [ 4 ] to develop
the currently strongest necessary and sufficient conditions for a Pareto-
optimum in convex programming.

Utilizing (3.2) we can now define and construct, im{or ex-)plicitly
the Pareto-optimal (or "Pareto-efficient") empirical (frontier) production
function. Other usages of (3.2) to generalizations such as the "functional
efficiency” of Charnes and Cooper [5 ] will not be developed here.

First, by (3.2), the Pareto-optimal points (inputs!) among our n
empirical points can be determined. The empirical Pareto-optimal function
is then defined on the convex hull of these points by convex combinations
of the "output" values. Note that the convex hull of the Pareto-optimal
points might not include all of DE since only the doubled line portion of
the frontier is Pareto-optimal.

Since for efficient production we wish to maximize on outputs while

minimizing on inputs, our relevant gk(x) include both outputs and inputs, e.g.

......................
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‘Xi 9 k=5+i, i'—'l,...,m

for (x,y) ¢ QE

(3.3)  -g{x) 2

For the optimization in (3.2) we clearly need only consider (x,y) ¢ PE

rather than QE. Thus the constraint inequalities in (3.2) are for a test

:
3

point (x*,y*):

(3.4) y2y* , x<x*

and we have

Theorem 2: The envelopment constraints of Data Envelopment Analysis in

production analysis are the Charnes-Cooper constraints for testing Pareto-

optimality of an empirical production point.

Al '1w" EaEAL

In no way, as others, e.q. Fdre [13] have mistakenly asserted, is
Data Envelopment Analysis restricted to linear constant returns to scale
functions or to truncated cone domains. Evidently via (3.2), Data

Envelopment Analysis applies to much more general functions, function domains

AR AN '1II"‘ or

and other situations than the current empirical production function one.
To test an empirical "input-output" point (XO, YO) for Pareto-

optimality, the C2 (Charnes and Cooper) test of (3.2) becomes

min -eTYx + eTX\
s subject to YA - s =Y,
:' (3.5) -Xi -5 = 'XO
i eTA =1
o X, 8T, 8720
- 2 4
- where X = [Xl,..,Xn] , Y = [Yl,..,Yn].
] .
T Since -eT(Y>—Y°) + eT(XA-XO) is an equivalent functional (it differs fron
the above one only by a constant), we can rewrite the problem for convenience
1
h 10 4
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in later comparisons as:

min -eTs+ - eTs'
subject to Yx - s+ = Yo
(3.6) =X - = -X0
eTA =1

. + -
with A, s , s 20

This is the new DEA form for the production possibility set QE via PE. As we
shall see later, other variations of Qp can be accomodated easily by

simple modifications of or additions to the constraints on . Its informatics

P

and software involve only minor modification from that of the Charnes,
Cooper, Seiford and Stutz paper [11] as developed by I. Ali and J. Stutz

for the Center for Cybernetic Studies of The University of Texas at Austin.

11
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EFFICIENCY ANALYSIS

As mentioned, managerial and program comparison aspects of
efficiency analysis were initiated by Charnes, Cooper and Rhodes in [ 6 ],
[ 8], and [ 9], through a generalization of the single input, single output

absolute efficiency determination of classical engineering and science to

multi-input, multi-output relative efficiencies of a finite number of

"

decision-making units "DMU's" (sometimes called "productive" units or "“response”

units). The multi-input, multi-output situations were reduced to the "virtual" singl
input single output ones through use of virtual multipliers and sums.

Explicitly, the CCR ratio measure of efficiency of the DMU designated "o

R
. L Y e e e e
Y JJ_JA'L IR *

is given by the non-linear, non-convex, non-Archimedean fractional program

(see [ 7).
T
Max n Yo
T
e
I3 XO
nTY.
subject to —T—l < 1 , 3 =1, , N
X,
]
T
(4.1) - = < -ce!
(’TX
> "0
: T
’ - —%—— < -ce
3 * %o
:
N where the entries of the Xj and Yj are assumed positive, . is a non-
i Archimedean infinitesimal, eT is a row vector of ones and, by abuse of
p notation, has s entries for nT, m entries for ;T. (XO,YO) is one of the
i n input-output pairs.
| 12
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Employing the Charnes-Cooper transformation of fractional programming

TAo T,.7 T4 7,7 T, _
(4~2) H =0 /u XO s V C/C XO ’ on'l

we obtain the dual non-Archimedean 1linear programs

max uTYo min 8 -ceTs+-ceTs'
subject to »TX =1 Y * =Y
j v, . -5 = Y,
T -
(4.3) uY-vX <20 GXo - X2 -s =0
. < ee Ay sty 8T 20
-vT < EGT

L 4
where X & [Xl""’xn] , Y E [Yl""’Y ].

Although, clearly, no assumptions have been made concerning the
type of functional relations for the input-output pairs (Xj,Yj), the dual
program may be recognized as having the Data Envelopment Analysis constraints
for an empirical production possibility set of Farrell, Shephard, etc. cone

type QE J BUC(C, and, since

(4.4) 8 - a[eTY\ - eTxx]

is an equivalent form for the functional, as being a Charnes-Cooper Pareto-

optimality test for (OXO,YO) over the cone on the (Xj’Yj)‘ j=1,...,n, with
pre-emption on the intensity 6 of input Xo. As shown, for example, in [7 ],

. . . * *4 *_ 'j
DMU0 is efficient iff 6 =1,s =0,s =0. lﬂ

Re informatics, which are particularly important since all n %

efficiency evaluations must be made (i.e., n linear programs must be solved), ;E

the dual problem can be compdted exactly (in the base field) as shown in [ 5],

13
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e.g., with the code NONARC of Dr. I. Ali (Center for Cybernetic Studies, The
University of Texas at Austin), or approximately by using a sufficiently
small numerical value for €. A typical efficient point is designated by
(x,y) in Figure 1.

If a DMU is inefficient, the optimal A*j >0 in its DEA problem

(=Charnes-Cooper test) designate efficient DMU's. Thus, a "proper" subset of

the efficient DMU's determines the efficiency value of an inefficient

i DMU. The convex combinations of this subset are also efficient. Thereby
3 to each inefficient DMU a "facet" of efficient DMU's is associated. The
[ transformation

ﬁj * *_ *y

Ii (4.5) X - 8K -8, ¥ Y 4

where the asterisk designates optimality, projects DMUO, i.e., (XO,YO), onto

its efficiency facet.

This projection was employed by Charnes, Cooper and Rhodes [ 9] to correct
for differences in managerial ability in their analysis of programs Follow-
Through and non-Follow-Through. It also shows quantitatively what improvements

in inputs and outputs will (ceteris paribus) bring a DMU to efficient operation.

Thus, although the relative efficiency measure of an inefficient DMU will

involve the infinitesimal e, non-infinitesimal changes for improvement are
suggested.

Both Farrell and Shepard knew that ratio measures required adjustments
to correctly exhibit inefficiency of the second DMU in examples like the

following 2 input, 1 output, 2 DMU case:

DMU X1 X2 y
1 1 2 1
2 ) 4 ]

14




]

L% S ASNMAR S (e Sl

OGNS AP Crs ¢ olar)

N

AR B e’ ol i e KRl B afi ) Dl Bl A A Bet Ao} A ‘v—.—m
g L adi o et

Farrell added geometric points at infinity; Shephard simply excluded such
cases without giving a method for their exclusion. The non-Archimedean
extension in the CCR formulation is necessary to have an algebraically
closed system of linear programming type. Linear programming theory holds
for rion-Archimedean as well as Archimedean entries in the vector and matrix
problem data.

Our new Pareto-optimal DEA method 1ike CZS2 [11] associates facets with
non-optimal (=non-Pareto-efficient) DMU's. Clearly, by the C2-test, DMUo
is Pareto-efficient (Pareto-optimal) iff -eTs*+ - eTs*' =0, t.e., iff the
il-distance from (XO,YO) to the farthest "northwesterly" (XJ’YJ) point is zero.
The CCR efficient DMU's are also among the new Pareto-optimal DMU's. Projection

of a non-optimal DMU onto its Pareto-efficient facet is rendered by

*_ ) * g
(4.6) Ko w Xy =5 . Y e Y ts

To achieve a convenient efficiency measure, we modify the functional by
multiplying it by a ¢ >~ 0 and consider

(4.7) -éeTs*+ - felgT ,

where the asterisk denotes optimality, as the logarithm of the efficiency
measure. When the data in X and Y are scaled to lie between 0 and 10C, a
£ = 1/10(m*s) will yield a logarithm between 0 and -10. This measure might
then be called the "efficiency pH” by analogy with the pH of chemistry.

Our new measure relates to the units invariant multiplicative measure
of Charnes, Cooper, Seiford and Stutz [12], which as shown there is necessary
and sufficient that the DEA envelopments be piecewise Cobb-Douglas, by con-

sidering the entries in the Xj, Yj to be logarithms of the entries in XJ, Yj

which we employ in the multiplicative formulation.

15
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INFORMATICS AND FUNCTION PROPERTIES

(A) Partial Derivatives:

The guidance provided by the CCR, BCC, C252 formulations does not

include convenient access to the rates of change of the outputs with change

in the inputs. The optimal dual variables in the DEA side linear programming
problems give rates of change of the efficiency measure with changes in inputs
or outputs. The non-Archimedean formulations further may give infinitesimal
rates, which are not easily employed. And, for most of the efficient points

one has non-differentiability because they are extreme points rather than
(relative) interior points. Nevertheless, because of the informatics, e.g.,
computational tactics, we employ in testing via C2 for Pareto-optimality,

the following constructive method can be employed.

On reaching a non-Pareto optimal point, our software discovers all
the optimal points in its facet, hence, implicitly, all the convex combina-
tions which form the facet. Since the Pareto-optimal facet is a linear
surface it is not only differentiable everywhere in its relative interior
but all its partial derivatives are constant throughout the facet. Thus,
we need only obtain these for any relative interior point of the facet tc
have them for the whole facet. Such a point is the average of the Pareto-
optimal points of the facet.

Let

(5.1) F(xl,..,xm, yl,...,ys) = 0

be the linear equation of the facet. Since we have sufficient differentia-

bility in the neighborhood of the average point (x,y), we know
= - [3F aF_
3xi aya

where the right side partial derivatives are also evaluated at (x,y).

Byd

(5.2) T
1

16




Suppose we run the Cz-test with (x,y) as the point being tested. Then

the optimal dual variables corresponding to input ii and &n are respectively

3F | 3F
—_— and — .
(aXi )- - < ayﬂ)— -

Y Xy Y

Thus, the rate of change of output Yp with

respect to input X; is simply the negative of the ratio of the optimal dual
X; constraint variable to the optimal dual y, constraint variable!
More specifically, all Pareto-optimal (Xj’Yj) of the facet for the

(7) - - :
barycente; (x,y) satisfy

(5.8) uxly - wix - @x =

T T

where (u* , ¥*) are the dual evaluators at an optimal basic solution,

y V¥

since they do not depend on the Ca-test right hand sides. Thereby our
(5.5) F(X,y) = u*Ty - \)*Tx - Px = 0

Clearly, u; = aF/ayn . -v; = aF/axi as already stated.

17

........
...............




h

R e )

..................

(B) Isotonicity and Economies of Scale:

Theorem 1 shows that every component of the empirical frontier

production function is a concave function.

Suppose xl and x2 are the inputs of two Pareto-optimal DMU's in
1 2 . 1 _ %01 2 _ oy ¥ .2
the same facet and x~ > x“. Since x~ = X (x") and x“ = X} (x“) we must have
N N . .
eTXX (xl) > eTXA (xz). But for Pareto-optimality, eTY>*(x1) = eTX**(x‘), i=1,2
Ty %, 1 Ty, * .2 . .
so that e YA (x") 2 e YA (x"). Then, letting f"(x) denote the empirical

Pareto-optimal (vector) function we have

(5.3) eTfp(x]) > eTfp(xz)

Further, if x" = uxl + (l-p)xz, 0 <p<1, (XY & ufp(xl) +

2

(1-.)fP(x°) by construction of the empirical frontier function and we have

eTfp(xl) ZueTfp(xU) > eTfp(xz).

For the single output case of Farrell, etc., then
Theorem 3: If there is only a single output, the empirical Pareto-optimal
production function is isotonic in every facet (regardiess of what underlying
production function we have sampled from).
Proof: A function f(x) is “isotonic" iff x2 > x” implies f(x?) > f(xP).

Also eTfp(x) = fP(x) with a single output.

Possibly because of ignorance of standard mathematical terminology,
the isotonic property has been called "strong disposability" in the economics
literature. The name "weak disposability" has also been used for the
weaker property f(ox) > f(x) whenever ¢>1. A better name might be “ray

isotonic."

18
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o

y Our arguments preceding Theorem 3 establish a "sum isotonic" property
o

x on facets for the empirical Pareto-optimal function with multiple output

- components (regardless of the underlying production function set we have

"

"

sampled from), namely, ;

Theorem 4: eTfp(xa) > eTfp(xb) whenever e x? » eTxb with x2, x® in the same

facet.

Classically in economics, production functions studied have usually
been assumed to be homogeneous and defined on the non-negative orthant.
Thereby, whether or not a function for which f(px) = paf(x), with o 2 0,
had economies of scale would be decided by the value of the exponent ..

More generally, increasing or decreasing "return to scale" would be present
respectively, at x if f(ox) > of(x) or f(pox) < pf(x) for p>1 at points -x
in a small neighborhood of x. The BCC paper [ 3] gives a criterion for
deciding this (with production possibility set Qg U BUC or 0 11 B) but does
not give us the rates of change.

Because of our preceding theorems, however, we know that empirical

Pareto-optimal functions are sum-isotonic on facets and concave in each

- component function regardless of the nature of the underlying production
possibility set. Thereby, we automatically anticipate lower and lower

returns to scale in going from facet to facet with increasing eTx. And

our partial derivatives can give us explicitly the rates of change in each

& observed facet.

Practically, our choices of inputs are generally made with the
expectation that the underlying Pareto-optimal function is isotonic, i.e.,
we choose the form of the inputs so that an increase in an input should

not decrease the outputs. But even here we need still more to determine

<

the non-concave portions of an isotonic functicr. For example, in fFigure 2

an isotonic function is plotted together with the resulting concave cap

19
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(large dashed lines) obtained as the empirical function:

Figure 2

As suggested in our eriginal (1981) paper, non-concavity can be
explored by applying (output) component by component strictly concave
transformations g, to obtain gn(yﬁ) instead of y, so that g,(y.(x)) would

be concave and our plot would look like

4
—_—

o
o o ’
yd ’
/ [ ] ° ®

Figure 3
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(C) Discretionary and Non-Discretionary Inputs:

-'_'4 .l.". S

In a number of practical applications,certain relevant inputs, e.q.,
unemployment rate, population, median income, are not subject to "discre- 1;
tionary" change by the decision-makers of decision-making units. These are ;i
called "non-discretionary” inputs. They are important in influencing the i
outputs and in furnishing the reference background in terms of which units' ??
efficiency is rated. Not infrequently the facet associated with an f;
B

inefficient unit has the same values for the non-discretionary inputs, in
which case there is no problem with the rating assigned. If not, however,

to obtain more meaninaful ratincs we can add constraints on % to those in

(3.5} which require the non-discretionary inputs to be the same as that of the

unit being evaluated. Thereby, a more meaningful rating will be attained.
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CONCLUSIONS

We have shown how direct application of the Charnes-Cooper test
for Pareto optimality lTeads to a simpler and more robust method, efficiency
pH, encompassing all previous ones for ascertaining "efficiency." Further,
Pareto-optimal characterizations and constructions of empirical production
functions restrict us methodologically to exploration of such functions
by means of concave sum-isotonic caps. Economies of scale from these
thereby expectedly decrease with increase in the magnitude of the input
vectors. Use of transformations of outputs, as we suggest, can uncover
non-concave regions of the underlying production function where substantial
economies of scale may prevail. Our new informatics-device and theory
of the use of the facet average (or barycenter) also constructively
furnishes quantitative estimates of the rates of change of outputs with
respect to inputs which have not been available previously. These new
devices, as with other usages of empirical functions, suggest important
new areas for development of statistical theory to distinguish between
true properties and sampling "accidents.” The vital importance of further
development of the informatics of solution of systems of adaptively
developed linear programming problems for Pareto-optimal constructions

should also be clear.
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Informatically, we are doing this by applying transformations of

™|

form 9, (y&) = 91 + (yn-in) with B = 20 to obtain possible new facets in
the g (y,).

Problems do arise, of course, on whether one gets spurious
empirical frontier portions in this manner for empirical points which

should "really" be inefficient. Evidently such non-concave portions are

portions of increasing returns to scale if they are truly on the frontier.
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III. INVARIANT MULTIPLICATIVE EFFICIENCY AND PIECEVISE COBB-DOUGLAS ENVELOPMENTS

Introduction

In [1], Charnes, Cceper, Seiford, and Stutz (C2S2?) develop a multiplicative
(orlog) measure of the relative efficiency of multiple input, muitiple output
productive (or "decisionmaking") units (DMU's). In contrast to the CCR measure
[2, 3], the multiplicative measure obtained in [1] is not invariant under change
of units in the inputs or outputs. We show here how by a simple change preserving
the multiplicative format that a units invariant multiplicative measure can be
obtained. Interestingly, the Data Envelopment Analysis (DEA) associated with
this new modification necessarily yields optimal envelopments by Cobb-Douglas
functions, i.e., the efficiency surface is piecewise Cobb-Douglas rather than
merely log-linear! This uncovers a new role for Cobb-Douglas functionsl--they

are necessary for the units invariant property of a multiplicative measure.

Units Invariant Multiplicative Efficiencies

The C2S2 multiplicative model reduces the input-output quantities to single
virtual output to input ratios. If we now introduce an additional virtual output
multiplier and virtual input multiplier, we obtain the following form for our

problem to measure the efficiency of DMJ,relative to all the n DMU's:

~ ~

max (e” ; YHry / (eb E xVi)
ro io

n=1 i=1

A ~

s m o
(1) s.t. (e" 1 Yﬁf) / (eE nx¥i)y<1, j=1,....n
re1 7Y j=1 "

-n < 0. -E < 0. 'ur < -6’ '\)1- < -6' 'l‘.»‘i,

1Other properties relating Cobb-Douglas forms to more general classes of
functions are examined in [5].
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where 6 > 0 and DMUy is one of the n DMU's in the constraints.

Suppose the units in the outputs and the inputs are changed so that Yrj

becomes FrYrj and xij becomes bixij where ar’bi >0, Vr,i (Note a. or bi =]
corresponds to no change in those units). Problem (1) becomes

~

Nimr AHr Up Em pVi Vi
max e (I a, yn Yr.0 / e (n bi i Xio

r r i i
(2) s.t ea(n a’r)n Y¥r eg(n bYiym x¥i <1, 5=
e Ve r Y‘j ; i ) 1"]' 'J' ...-,n
r r i i
-n<0, -£<0, -u. <-§, -vj < -6, Vr,i.
If (1) has optimal value E(1) with n*, E*, u*, v* an optimal solution,

then exp(a) = Kexp(a*)/n aﬂr*, exp(g) = Kexp(g*)/n b¥i*, u*, v* (where K > 0
PN r i
assures n,u > 0) is"feasible" for (2) with value E{(1). Hence for (2) the optimal

value E(2) > E(1). Similarly from an optimal solution n, &, u, Vv to (2) we
construct a feasible solution to (1) with value E(2).

i.e., the efficiency value is invariant under change of units.

The Cobb-Douglas Property

Taking logarithms in (1) and going to vector matrix notation as in [1],

we obtain the dual linear programming probiems:

(5
[
P

~

mx n -§ + uTYo - VTXo min -GeTs+- GeTS‘
(3) s.t. ;eT - EeT+ uT? - vTX <0 s.t. eTX - ot = 1
-n <0 -eTX -8 = -1
- <0 Y2 st =Y,
-uT < -5eT =X -5 = <X,
< -6e! r, 8%, 67,5, 5720
27

...................... . . P Y et e
T A S S L AT L, . L B Lot W e T
Badadrdadodidadad sice Sadalad

el ot A afUiouivh Sk abel MG seb-stun i oie coh -

Thereby E(1) € E(2) <€ E(1)

'A"; ialeZad et adad \‘;’A‘A

K.




AR SRR i e oA e ol A i o JuiC i g AR S Sonh ML S et SONE SAd SSd st B it e mad sud o vy T e T WY W W
) N faltS .. R Pl g 4 Sl iadi A A Mals *a A Y

N Here 1l represents the DEA side of the efficiency problem. Adding the first
iy two equations in II, we obtain -6% - 87 = 0. Since 87, 8 > 0 we must have

8 =6 =0. Thus II reduces to

Ts+ T

min -8e - 6e's
(4) s.t. Y- st = Y,
XA -s” = =X,
. eTA =

A, st,sT> 0

~

Thereby we have Yo and X, enveloped by convex combinations of the Yj, Xj. With

optimal solutions A*, s**, s*- we can write

n % _*+
Yo = T YNe™S;
=17 .
(5) no* where z Aj =1
Xo = Tl X:je3J J
j=1"

* * * * *
A , We mean (YXQ, C e s Y)‘J_)T resp. (XXJ, C e ey XXQ)T.
13 sj 1) mj

2\ ¥
a Yol , .
nd by j resp XJ

*

Thus our optimal envelopments are by Cobb-Douglas functions with AJ

> D implying
that DMUj is efficient, i.e., DMU, is associated with the efficiency surface
"facet" spanned by those DMUj's for which x} > 0, ;

We note further that the simplified dual programs corresponding to (3) are

now
(1Y 11’
max u'¥o - VX +w min  -ge'st - se's
(5) s.t. uT? - vTi + weT <0 s.t. Y - ¢t = Yo
-uT < -éeT =X -5 = -Xg .
- < -gel el) =1

A, s*, 50 20

- 28




These results present us with a new method for estimating piecewise Cobb-

Douglas production functions directly from empirical data. The form of (II')

in contrast to that of [4] is also sufficiently simple that one can anticipate

that the mathematical statistics of this type of Cobb-Douglas estimation may

well be developed in the near future (see also the Appendix in [3]).
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IV. A COMPARITIVE STUDY OF DATA ENVELOPMENT ANALYSIS AND OTHER APPROACHES
TO EFPICIENCY EVALUATIOR AND ESTIMATION

1. Introduction

Data Envelopment Analysis (DEA) is a new efficiency measurement
methodology developed by A. Charnes, W. W. Cooper, and E. Rhodes as set
forth ia[12] [13] and [14]l/ It is designed to measure the relative
efficiency of Decision Making Units (DMUs) which use multiple 1inputs to
produce multiple outputs even when the underlying production function is
not known and where, additionally, these functions may also be multiple
in character. This contrasts with the situation for statistical
techniques and theory, e. g., as employed in economics, where either the
underlying production function must be known, or at least its parametric
form must be assumed before it can be used to evaluate efficiencies and

where, usually, a single functional form is also assumed. See, e. g.,

Feldstein [18]. See also [32] and [33]. The latter, regression approaches,
are thus limited, especially in the case of public sector institutions such
as hospitals, etc., where programs and activities are even less readily
identified for such assumptions than is the case in industrial production.
DEA has now been applied to several types cf organizations including
education [5] [6], health care [4] [29], Navy recruiting [22], and criminal
court systems [21]. Nevertheless something more is required and, in
particular, the validity and reliability of DEA in locating inefficient
DMUs, identifying the inputs (and/or outputs) where the inefficiencies
occur and estimating their amounts or magnitudes all need to be evaluated.
One way to approach this task is via a situation in which the identity of

the truly inefficient units is known along with the sources and amounts of

this inefficiency. This paper therefore attempts to evaluate DEA through use

1/ See also [25].
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of an artificial data base where the efficient and inefficient DMUs are all
known in numerical detail. DEA's performance is then compared with other

commonly employed techniques such as ratio and regression analyses.

Regression and ratio analyses were selected for these evaluations
because’they are widely used in fields like health services, which is the
field we shall use to guide our data base construction. In this paper

we restrict our examination only to some of the fairly simple forms of ratio

C 1 s
and/or regression approaches that are in wide use.—/ More sophisticated
regression techniaues such as the translog function and other so-called"flexible

functional form" approaches are considered elsewhere. See Sherman [29].
The following section describes how the data base was constructed and

section 3 discusses the data base that was developed. Section 4 describes
the version of DEA that will be used while sections 5, 6 and 7 discuss the
results of applying DEA, ratio and regression analyses to this data base. The
resulting comparisons are summarized in section 7 with respect to the

ability of these techniques to identify and distinguish between efficient

and inefficient DMUs. Section 8 then extends the uses of DEA to locating

and estimating the amounts of inefficiencies in particular DMUs in ways

that are not general]y‘available when the ratio or regression approaches

are used. A concluding section then discusses some of the shortcomings found
in these other approaches and indicates where they differ from DEA and

how some of their shortcomings might be repaired.

1/ Similarly,only one version of DEA is used and no attempt is made to
distinguish between various types of efficiencies such as scale vs.
technical efficiencies and other sources of inefficiency such as are
examined in [3]. Finally, we did not use statistical techniques to
develop our data base, as was done in [2], and hence can make only
Timited use of statistical significance tests and like devices for
generalizing our results. OQur purpose is rather to supply insight
of potential value on the use of the techniques we study rather than
to secure generalizations for the different data situations that
might be encountered in actual practice.
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2. Model Structure and Data Generation X

The artificial data set was constructed by defining a hypothetically a
“known" technology which applies to all Decision Making Units (DMUs) and

defines efficient input-output relationships for each of them. 1
Inefficiencies which were explicitly introduced for certain DMUs take the
form of excess inputs used for the output levels attained. Hence, a DMJ
that achieves its output level by using only the amount of inputs required
by this hypothetical technology is efficient while a DMU that uses more

than the_required amount of any input is inefficient. To make the inputs
and outputs easier to recognize, they are referred to and labelled in the
context of a hospital study as one area of potential interest. See

Sherman [ 29]. We assume that these hospitals are all public (not-for-
profit) institutions so that the usual profit calculus and/or price-weighted

reductions to a scalar measure of efficiency evaluation are not wholly

appropriate.

1/ Knowledge gained from the study of Massachusetts hospitals reported in
129] was used in the cnoice of inputs and outputs and in the cunstruction
of the data set.

33

.......................
........




LA o ST O BN AT SN A A AT Rl Il A sl Bak

BRI AN Bt it S A A St Y I 4n ke S e a0 ia 4 e 2 -T-ﬁ’}

The set of artificial hospital data generated for our simulation consisted
of three outputs produced with three inputs during a one year period of timel/

as follows:

Outputs Inputs

y) ¢ Regular patient® care/year xy: Staff utflized in terms :H
(patients treated in one year of full-time equivalents, o
with average level of inputs i.e., (FTE s)/year :a
for treatment) -
>,
Yy ¢ Severe patient? care/year X7 Number of hospital bed
(patients treated in one year days available/year

with severe illness requiring
higher input levels than
regular patients for more
complex treatment).

Cdan b Y

¥y ¢ Teaching of residents x3: Supplies in terms of
and interns/year dollar cost/year
(number of individuals -
receiving one year of training)

*measured in terms of number of patients treated

The data set to be generated was for 15 hypothetical hospitals which we
label as H1, H2, ..., HTs; to represent the pertinent DMUs.E/ They are all
assumed to cchieve their outputs via a common production process, which
they may use efficientiy or inefficiently. The resulting observed values
are then constructed in a manner that we shall shortly describe.

In this study we shall focus on input inefficiencies, by which we
mean that one or more of the above inputs may be used in excess to obtain
a particular hospital's cutput values. Although we could also similarly
study output deficiencies (in the form of output shortfalls from given
inputs)éée shall not lengthen the paper to undertake that study here.

In any case the known values of the per unit inputs for efficient pro-

duction are given in Exhibit 1 inserted at the end of this paper.

1/1. e., we are considering all data as annual rates.
i 2/Subdivisions may also be used such as, e. g., the surqical units within e?ch
A hospital that were studied in [29 ].

g 3/An output shortfall approach from given inputs is used in [2]. e
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The usual regression approach to efficiency and related types of
economic analyses in multiple output situations uses a single aggregate
function of a linear or logarithmic variety in which total cost is
regressed against the observed output values. See, e. g., [18]. This
approach carries with it a variety of assumptionsl/ which we shall try to
favor in our construction by using the same prices and a common technology
for all DMUs. We shall not assume that all DMUs operate on their efficiency
frontiers, however, but we shall otherwise proceed in accordance with the
usual methods of estimation, testing and analyses that have been commonly
employed in regression studies of health services and related fields.

To make the sense of this discussion more precise, we present our
expressions for generating the inputs required for efficient operations

by any hospital in the following form:

3
Xee = I @4pi Ypi - (1)
ij rel J J
where
xij = amount of input i used per year by hospital j
yrj = amount of output r produced per year by hospital j
airj = amount of input i used per unit of output r by

hospital j during the year.

1/ See, e. g., Sato [27].

2/ A use of DEA to distinguish coefficients for input-output analyses
derived from data for efficient and inefficient sets of operations may
be found in Schinnar [28].
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These airj values, which are fixed constants, represent an efficient set
of coefficients which may be used to generate the inputs required for any

observed (or planned) level of outputs. In some cases we will assign

values a. . > a. .
ird irj

inefficiencies which yield values

for some i, r and j to represent managerial (= hospital)

- 3

-~ ~
X = I a

13" L (2)

irj yrj'

-~

with X4 4 > Xij when inefficiencies are present.

The efficient a ., values are given, free of any of the j = 1,..., 15
hospital identification subscripts, in Exhibit 1. These values are the same
for all hospitals so that aj;” .004 FTE/patient represents the efficient
labor requirement in Full Time £quivalent units per regular patient.

Similarly a), = .005 FTE/patient represents the efficient requirement for a
severe patient and 313 = ,03 FTE/training unit represents the efficient

requirement to train one new resident/intern during a year.

Analogous remarks apply to the values 85 * 7 bed days/patient, and

a,, = 9 bed days/patient for regular and severe patients, respectively,

22
shown in the Bed Days column of Exhibit 1. The blank shown in the row
for Training Units in this column means that 53 = 0 applies. That is,
no Bed Days enter into the training outputs.

Finally, a3y = $20/patient and a3, = $30/patient represent the
efficient level of supplies required per regular and severe patients,
respectively, while a3 = $500/training unit is the coefficient for
efficient training operations in output r = 3. Putting this i = 3 input
in dollar units avoids the detail that would otherwise be needed to

identify the different types of supplies that would be required for

teaching and for different types of patient treatments.
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DEA does not require reductions to cost equivalents. The various

outputs and inputs may be specified in different units of measure and,

indeed, it can be shown that the resulting DEA efficiency value is
1/

independent of the units of measure used in any output or input.—" On

the other hand reductions like these are required for the ratio and

regression measures we shall also study. Therefore we next show how the
efficient costs are derived to obtain this part of our data set. This

is done via expressions of the form, |?

3
c.= I kja, r=1, 2, 3, (3)

where we have omitted the index j for hospital identification because only
efficient costs are being considered. Here ki represents'fhe cost of the
i h input reguirement for the rth output under efficient operations where
k] = $10,000/FTE
k

» = $10/bed day (4)

ks $1/supply unit.

These data are then combined with the preceding A3 values to

obtain
€y = kqayq *+ kpayy * kgagy = $130/regular patient
C2 = Kyayp * kpdpp * k3235 - §170/severe patient (5)
- . s . ]
€y = kjayg * kpaps * ky2ss $500/training unit. 3
These are the formulas used at the bottom of Exhibit 1 to produce !’
the efficient cost of outputs shown in the last column in the body of the f;
table.

1/ Provided, of course, thét these same units of measure are used for the
specified output (or input) in the data for every DMU. See Charnes,
Cooper and Rhodes [10 ]J. See also Rhodes [25 ] and Charnes and Cooper [ 7 ].
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3. Data Base Development

We now turn to Exhibit 2 which reflects the composition of
inefficient and efficient hospitals included in our data base. The
hypothesized "actual" (or observed) inputs per unit output used by each
hospital, whether efficient or not, are listed in Exhibit 2, columns 9-16
with inefficient input levels per unit of output denoted by (::::).

Column 17 reflects the actual vacancy rate (% of unused bed days available
during the year) where, as noted in Exhibit 1, an efficient hospital is
expected to have a 5% vacancy rate.

We develop the actual inputs used for each hospital in the manner we

have already described by first selecting an arbitrary set of output values

b
p.
.
b
’0
\.,

for each of the hospitals listed in the left-hand stub;l/Teaching units
per year are reflected in column 6, regular patients treated during the
year are in column 7, and severe patients treated during the year are in
column 8.
Other ways of summarizing patient care outputs for later use are
included in columns 4 and 5. Column 4 reflects total patients as
the sum of column 7 and column 8. Column 5 reflects the percentage (%)
of severe patients treated which is based on (column 8) + (column 4) X (100).
We develop this percentage output measure because it reflects output data
in a form which is often used to evaluate efficiency in many real data sets.g/
The inputs used by each hospital to produce the outputs in columns 6, 7,
and 8 are reflected in columns 1, 2, and 3. Column 1 contains the full time ig

equivaients (FTE s) of labor years used. Column 2 has the bed days/year

which were available and column 3 gives the supply dollars used during the vear.

1/ AlTthough these values could have been selected by statistical principles--
e.g., of an experimental design variety--there seemed to be little point in
doing so because our objective was to secure insight rather than the kinds of
generalizability that require statistical tests of significance. See [2],
however, for a study of the latter type.

2/ See the discussion in Sherman [29].
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The values in columns 1, 2, 3 reflect mixtures of efficient and
inefficient utilization of resources because of the way they were derived.
We can_clarify this by means of Exhibit 3 which illustrates how the data
for Hl, an efficient DMU, and H15, an inefficient DMU, were constructed.

H1 is efficient and therefore used the same inputs per unit outputs as

the structural model in Exhibit 1. During the year, Hl provided care for
3000 reqular patients, 2000 severe patients, and 50 training units of
service. It therefore utilized (.004)(3000) + (.005)(2000) + (.03)(50) = 23.5
FTEs in-that year. HI15 produced the same outputs as Hl but was inefficient
in its use of certain inputs. It used .005 FTEs /regular patient, while it
adhered to the structural model FTE usage rates for severe patients

(.005 FTEs /patient) and training (.03 FTEs /training unit). H15 therefore
used (.005)(3000) + (.005)(2000) + (.03)(05) = 26.5 FTEs /year to produce
the same outputs. Similarly, H15 is inéfficient in the number of bed days
used and supply dollars used per regular patient but is efficient in the
amount of bed days and supply dollars consumed for severe patients and for
supply dollars used for teaching outputs. Bed days and FTEs and supply
dollar inputs are also calculated in Exhibit 3 to further illustrate the
way the data base was constructed.

The number of FTEs , bed-days, and supply dollars inputs were calculated
as illustrated in Exhibit 3 for each hospital based on the arbitrarily
assigned output mix of regular patients, severe patients and training units
and actual efficient or inefficient input per unit output rate reflected

in Exhibit 2.
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Certain relationships posited in the structural model are generally
not known, like the actual amount of staff time and supplies that are
required to support each intern or resident at a hospital. We nevertheless
explicitly introduce these relationships to determine if the efficiency
measurement techniques we will apply can uncover them. Before proceeding,
however, it should perhaps be noted that when the underlying

structural model is known, the determination of which DMUs are inefficient

can be directly determined and techniques such as we will be considering
would be unnecessary for purposes of efficiency evaluation.

4. The DEA Model:

L
]
The Charnes Cooper Rhodes (CCR) model for data envelopment analysis !!

which we will use assumes the following form:

Objective:
s
rfl Up Yo
max h, = —
I w. X,
j=1 1 10
Constraints: (6) .
S 9
Less than I u.Yy..
Unity : 1>ps) 770 . 15 i
Constraints m 3 J * i .
L W, xij .q
i=1 :
Positivity &= O <wup 3 r=1,...,s
Constraints® 0 <wj ;3 i=1,...,m
Data:
th th

Outputs: Yrj = observed amount of r~ output for j- hospital

1)

Inputs:  x:: = observed amount of ith input for jt" hospital.

iJ

1/ Other models which might have been used can be found in [3 ] and [15].
See also [16].
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This model is therefore in fractional programming form with fractional
constraints. As noted in Charnes, Cooper and Rhodes [13 ] it may be
replaced by an ordinary linear programming model that also has
non-Archimedean conditions imposed on the variables for what are here
referred to as positivity constraints.l/

We shall not enter into this kind of development but shall instead
try to explicate what is happening in our DEA analysis by means of the
above model. First we observe that the efficiency ratings are all
restricted to an upper limit of unity. One of the j = 1,...,15 hospitals,
when singled out for efficiency evaluation,is represented in the objective

as well as the constraints. By virtue of the latter condition we must

j and xij

positive so that,together with the positivity imposed on the variables,

have max h, = ho* < 1. Furthermore all observations y. are
we will also have 0 < h * < 1 with h * =1 when and only when DMU,. the

DMU being evaluated, is efficient.

Qualifications need to be entered to allow for the presence of slack
in the corresponding linear programming mode].gf We will not treat this topic
in rigorous detail in the present paper but will instead supply an illustration
with accompanying discussion that will provide insight into what is

involved. Here we need only say that when slack is present in some input

then, with efficiency, that input may be reduced to a new input level by

1/ See Charnes, Cooper, Lewin, Morey and Rousseau [11] for a precise

~ development.

2/ Any slack which occurs in (6) is simply the complement of an efficiency
rating but the development in [ 11] provides a way of identifying the
presence of non-Archimedean values in (6) with slack in the corresponding
linear programming model.
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removing the slack without affecting any output or any other input. Hence
the input which involved this slack was excessive and the operation could
not have been efficient.

Bearing this in mind we next initiate our DEA analysis by reference
to the data of Exhibit- 2 after which we shall attempt to compare the
resulting efficiency ratings with cost ratio and regression approaches

applied to this same data base.

5. Applications to Artificial Data Base.

Applying (6) to Exhibit 2 with each of Hl,...,H15 inserted in the
objective produces the h; values reported in Table 1. Every one of the :
efficient DMU's has received a rating of h; = 1 but two inefficient DMU's--
H10 and H13--are also accorded a value of h; = 1 even thou@h they are
inefficient. The six DMU's that are rated as inefficient, with h; <1,
are accorded these values by comparison with certain efficient units that
comprise an efficiency reference set for the inefficient DMU (see Tatle 1).
For example, H8 was found to be inefficient by direct comparison with H4; .’
and H15 is being compared directly with H4, H6, and H7. This reference -

set,we need only rote here, is supplied as part of the optimum basis in

the linear programming computations. Hence the model and computing
routines supply what is wanted without extra effort and, furthermore,
the appearance of a DMU as part of an optimal basis ensures that it is
efficient so that separate computations need not be made for these

entities if that is all that is wanted.l/

1/ Computer codes are available for effecting these computations. See [6 J.
New software by I. Ali and J. Stutz is also available from the Center for

Cybernetic Studies at The University of Texas at Austin which detail the
efficient facets observed.
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It might be observed that the two inefficient DMU's that were
accorded efficiency values of h; = 1 have no such reference sets. This
suggests that they have special properties which can be submitted to

further analysis by means of the non-Archmidean formulations that we

touched on earlier in~the text;/ We shall not turn aside to deal with |
that topic. Instead we shall simply accept this identification of H10
and H13 as a possible weakness of DEA in the comparisons we are making

with other techniques since (as in this case) it can happen.

1/Note also that neither H10 nor H13 enter into the reference set for any
other DMU.
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Table 1
DEA Efficiency Efficiency
Efficient DMU's Rating (E) Reference Set
Hl 1.0
H2 1.0
H3 1.0
H4 1.0
H5 1.0
Hé 1.0
H7 1.0
DEA Efficiency Efficiency
Inefficient DMU's Rating (E) Reference Set
H8 0.99 H4
H9 0.98 Hl, H2, H6
H10 1.0
H1l 0.85 H&, H7
H12 0.99 H1, H4, H6
H13 1.0
H14 0.99 H1, H4, H6
H15 0.87 H4, H6, H7
N | 44
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6. Cost Ratio Analysis

We now consider how a manager, e. g., in a rate setting commission for
some state,l/ might determine which DMUs are more and less efficient when
using ratios, a widely used form of analysis to evaluate financial and
operating performance. In this example, all the inputs are jointly used by
these DMUs to produce three outputs so that we cannot proceed as we might
in the single output-case. A number of different ratios might be developed
to evaluate different sets of relationships such as FTEs/patient,
FTEs/severe patient, FTEs/reqular patient, FTEs/teaching output,
bed days/patient, bed days/severe patient, etc. Such a set of ratios does
not explicitly recognize the joint use of these inputs to produce these
various outputs. In addition, for the set of ratios calculated, a DMU may
be among the highest (least efficient) for certain ratios and lowest (most
efficient) for other ratios. This leads to some ambiguity as to whether
that DMU is efficient or inefficient and calls for some method of weighting

or ordering the importance of the ratios to gain some overall assessment of

efficiency such as was .generated using DEA in Table 1.

Rather than address this issue directly, we will focus on a type of
unit costing ratio analysis that is often applied to hospitals and
other organizations to evaluate DMU performance. By design we can say

that all 15 hospitals (DMUs ) paid the same price per unit for each type

of input and thus ignore possible difficulties which arise for a ratio
analysis when this is not the case. That is, we can combine the inputs into

dollar units without the confounding effect of differing input costs. Rather

@t
.‘
L.
b
N
g

1/ For instance, see [23] and [24].
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this patient total into $775,500, the total cost for Hl shown in Exhibit 3,
results in $138.48, the case mix adjusted average cost shown for Hl in
column (B) of Table 2.
46
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than deal with all these outputs, the teaching output might be viewed as a ¥
by-product or secondary output and the patients might be viewed as a single ;
output rather than segregate this into different categories of severity. é
This simplifying procedure is not wholly defensible from a cost accounting E
standﬁgint. Nevertheless, in the absence of any other way of combining and ;
weighting the outputs, similar approaches have been used for hospitals as é
well as other types of DMUs (see for example [23]), and this is the way we ;
shall proceed. ii
Table 2 column (A) reflects the average cost per patient for each DMU. a

This results in a ranking of hospitals reflected by the parenthesized number

directly to the right of the average cost figure in Table 2. The lowest

cost (most efficient) DMU is ranked 1 and highest cost (least efficient) DHU

is ranked 13. This ranking erroneously classifies H13 (tgnged 6) as more

;H
Ny
: 5
_

efficient than H3 (rank 7) and H6 (rank 9) and it classifies H9 as more
efficient than H6. In addition, there 1s no objective means for determining
the cutoff cost level to segregate efficient and inefficient units.

If the efficient relative costs of certain outputs are known, tie outputs
can be weighted to reflect a cost per weighted unit of output. In this case we
know the efficient cost of a regular patient ($130) and a severe patient
(4170) and the patient units can therefore be weighted to value each severec
patient as the equivalent of 170/130 ~ 1.3 regular patients. For example,

Hl would have adjusted patient output units of 3000 regular patients +

2000 x 1.3 severe patients for an adjusted total of 5600 patients. Dividing




Table 2

Single Output Measures

Case Mix Case Mix Adjusted Average Cost per
Ad justed Patient Segregated into High and Low
Average Cost Average Cost Levels of Teaching Outputs
Hospital per Patient per Patient Low* High*

Efficient Units (a) (B) e () (D)

H1 $155.10 (2) $138.48 (4) $138.48 (2)

H2 163.32 (5) 138.40 (3) 138,40 (1)

H3 168.32 (7) 142.65 (8) $142.65 (3)

H4 160.10 (4) 142,94 (9) 142.94 (5)

HS5 158.38 (3) 137.73 (2) 137.73 (2)

Hé 170.15 (9) 140.12 (5) 140.12 (3)

H7 142.60 (1) 135.81 (1) 135.81 (1)
Inefficient Units

H8 176.95 (11)  157.9% (12)** 157.99  (6)

H9 168,32 (1) 142.64 (7) 142,64 (5

H10 169.69 (8) 161.61 (1l4)** 161.61  (7)

H11 170.33 (10) 153.10 (10) 153.10 (7)

H12 178.33 (12) 155.07 (11) 155.07 (5)

H13 165.68 (6) 142.00 (6) 142.C0 (&)

Hl4 178.33 (12) 155.07 (1) 155.07 (5)

H15 179.74 (13) 160.48 (13)** 160.48 (8)
Mean 167.02 146.94 144.77 149.42
Standard Deviation 8.82 7.36 9.66

* Low teaching outputs were 50 units and high teaching outputs were 100 units as per
Exhibit 3, Col. 6.

*%*Hospitals more than one standard deviation over dverage cost.
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The adjusted cost per patient is reflected in column (B) of Table 2
with the new ranking in parenthesis inmediately to the right of the
average cost per day. Even with this (normally not available) weighting
of patients we continue to have a misranking with inefficient DMUs H9
and H13 being ranked as more efficient than H3 and H4. If we further
segregate the 15 DMUs™ by the third output (teaching), as is sometimes f@
done, and separate them based on those with high (100 units) versus low
(50 units) teaching outputs, the ranking based on unit costs is reflected 3

in columns C and D in Table 2. At this point, we have achieved an 1

accurate ranking for the high teaching output hospitals but we still have

not achieved an accurate ranking for the low ones. Because we have only two
values for these outputs, at 50 and 100 “"teaching units," we could distinguish
high vs. low output hospitals fairly easily in the present case, but generally
there will be many more values to consider with no objective guidance available
for separating high from low teaching output values and the difficulty of
distinguishing efficient from inefficient DMUs will then be compoundec.

The problem of locating a point beyond which DMUs are considered
inefficient is typically addressed by establishing a subjective cutoff
value, even though there is no assurance, theoretical or otherwise, that

the inefficient units will be accurately located through this process.

For example, if the cutoff was set at one standard deviation above the

3
o
%

mean adjusted cost per patient, only 3 DMUs (H8, H10 and H15) would be 1
i jdentified as inefficient as indicated in column (B) of Table Z.l ;i
E‘ The DEA ratings in Table 1 do not lend themselves to rankings of "
E the kind used in Table 2. As will b~ seen below, these efficiency measures i
i T/At 0.67450 = 5.95, three more DMUs (H11, HiZ2 and H14) would be added to

~ this inefficient set. We record this as an additional possibility for
improving this kind of identification even though most of the commonly
used adjustments are in the direction of kg, with k > 1.

.
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are intended to supply estimates of excessive resource utilization relative
to the Efficiency Reference Sets from which these ratings are derived. If,
on the other hand, one uses the estimated resource savings as a basis and
accords the same ranks to DMUs with equal efficiency ratings, a more
informative set of ranks would be available from Table 1 than Table 2.1/
Whether ranked or not, however, Table 1 is more informative than Table 2
provided, of course, that the efficiency values exhibited in Table 1 are

reasonably accurate.

7. Regression Analysis

In industries, including the "health industry," where the efficient
input-output technology is not known with any real precision, regression
analysis has been applied in order to gain "insights" into the production
relationships that might underlie the observations that have been generated
from past utilization of these processes. There are, of course, a variety
of problems that are encountered when using traditional regression
analyses to evaluate the efficiency of individual DMUs. One problem in
most such studies is that one relatively smooth relation is posited
to obtain the parameter estimates that are needed. Another problem is

that the estimated parameter values are based on least squares estimates which

1/ In general one would also need to impute dollar magnitudes or other
weights to the potential savings.
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provide "mean" or "central tendency" values that reflect a mixture nf

efficient and inefficient behavior in the data set.l/ Thus, even if the
posited functional forms are correct, the estimated regressions will only
reflect efficientlrelationships if all units in the study are themselves
efficient. Whatever reasons may be used to justify such assumptions in
competitive industries, they are likely to be much weaker in not-for-
profit settings such as education, health, and government.

Nevertheless such approaches have been extensively employed and so
we now cdnsider the extent to which regression analysis as it has been
used, e. g., in health studies, might be employed to identify the
inefficient units in the artificial data set. In the process we shall
also locate other potential problems in the use of such analyses even
when we can validly make the advantageous assumptions that
all DMUs have the same technology and pay the same prices for all inputs.

One part of our analysis involves a simple linear (additive) regression
model in which total cost was estimated as a function of the three outputs

produced by each DMU. The results were as follows:

C = -95.300 + 152 yp t 182.4 Yo * 1302 Y3
(8) (22.2) (767)
where C = Total cost per year (7)

= # of regular patients treated per year

=
t

Yo = # of severe patients treated per year

Y3 = Training units provided in one year

1/ Recent literature has begun to supply a variety of means for addressing
some of these problems when regression estimates for securing efficiency
evaluations are wanted. They do not appear to be very satisfactory, however,
and so we do not examine them here. See Banker, Charnes, Cooper and
Maindaratta [ 2 ]. We confine ourselves only to those types of regressions
which have been commonly (and widely) employed. See, e. g., [34].
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The standard errors noted in the parentheses below each coefficient
indicate high levels of statistical significance. The coefficient signs

are positive, as required, and the relation between the ¥y and Yo (for

« 0 ern .o e oo -
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regular and severe patient) coefficients is in the correct (plausible)
2

Ty

v v

direction. A high R® value of 0.97 suggests a good fit with the

)

observational data so, by standard reascning, a high degree of cost
variation is "explained” by these independent variables.l/
The only apparent discrepancy is a fixed negative cost estimate of
$95,300. This value, which is not statistically significant, might cause
the model to be questioned especially in cases involving hospitals with
relatively small outputs. Hence another regression with its total cost
intercept fixed at zero was calculated. We do not reproduce the results
here, however, since (consistent with what has just been said) the
resulting coefficient values did not differ greatly from those given in (7).

Hence the latter might be used to estimate the incremental cost per unit

of each output as in the second column of the following tabulation:

Estimated Efficient
Incremental Incremental %
Output Cost Cost Deviation
Y3 $ 152. $130 17.0
A $ 182.40 $170 7.3
Y3 $1302. $500 160.0
| :
; 1/ The independent variables were found to have fairly low inter-correlations
- as follows:
i r = -0.37; s o . £ a
: Y12 ry]y3 0.03; ry2y3 0.08.
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Focusing on the incremental costs in this manner bypasses the

difficulties associated with a negative intercept value. It also
corresponds to an assumption (not often stated explicitly) that the slope
coefficients may still parallel the true incremental efficiency values,

at least roughly, in a manner that corresponds to a shift of the regression
plane up to the frontier without altering its slopes.l/ In the present
case, we know the incremental costs for efficient operations and these are
supplied in the third column. The estimates from the regression are high

in every case. Only the estimate for y, (= severe patients) is even

tolerable and the estimated cost for y, (= teaching) is very wide of the mark.

Another use of such regressions is to evaluate efficiencies as was done
by Feldstein [18] in his now classic study of British hospitals. That is
the actually observed outputs for each of Hl to H15 would be inserted in an
expression like (7) and the resulting total cost would then be compared
with the corresponding actual costs at_this hospita].g/ The presence 0i a

negative intercept value could be troublesome, however, and alternate

forms of regression functions might then be explored.

1/ This method of parallel-shift treatment is explicitly incorporated in
some of the "frontier estimation" methods that have recently been devised.
See Forsund, Lovell and Schmidt [19].

2/ A variety of adjustments might be employed to allow for different hospital
characteristics and patient mixes, etc. See Feldstein [18] for further
discussion.
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Another type of function that has been commonly employed in hospital N

<!

studies, 1s the so-called Cobb-Douglas form. This form has the advantage N
of avoiding the possibility of negative intercepts and since, in the .

present data set, no zero outputs are present for any of the hospitals we
can also avoid difficulties that are sometimes experienced from this quarter.
Thus we now turn to >uch a Cobb-Douglas approach.

In logaritnmic form our estimated relation obtained from the data of

Exhibit 3 is

InC =3.98 + .62 1In ot .57 In yp .10 1In Y3 (8) ii
(.04) (.07) (.05)

-
e T

which, in the usua) Cobb-Douglas representation, becomes

C = 53.79 y]o.sz y20.57 y3o.1o. (9) #

In this case the coefficients in (8) and hence the exponents in (9) all

r-., -——r-' " T

appear to be reasonable as well as significant. In sum, however, the

5 Yus

exponent values (.62 + .57 + .20) exceed 1 which, being significant,

means that evidence of decreasing returns to scale is present, or at

[y

least this possibility cannot be rejected. In our case this may reflect

the complementary and substitution relations that are known to be present

. . 1 .
in some of the 1nputs.—/ The regression does not detect these relations in

this form, however, and the fact that it results in a significant value

2

(with R® = 0.96) could lead to erroneoys recommendations with respect to

decisions on the scale of operations.

1/ E. g., as reflected in A~ ] = y when going from x = Ay, with A a matrix
of positive constants as in (1) Thus, in general, A-l will have
negative as well as positive elements reflecting relations of
complementarity as well as substitution among the various inputs used
in producing these output combinations. See Sherman [29] for further
discussion.
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If we now consider DMUs as potentially inefficient when their actual
total cost exceed the estimated total cost in (9), then efficient DMUs
H2, H6, and H7 would be erroneously considered inefficient and inefficient
DMUs H11, H12, H13, and H14 would be identified as efficient. These results
togetﬁer with the results of our preceding analysis are drawn together and
presented in Table 3. _In identifying which DMUs are efficient or inefficient,
DEA has evidently done better than the others with the exception of the cost
ratio approach when the latter is (a) adjusted for case mix and/or (b)

jdentified with "low" and "high" levels of teaching outputs. There is, of

-

course, a degree of arbitrariness present in these cost ratio efficiency
and inefficiency characterizations that provide these favorable results for

comparison with DEA. Furthermore the Case Mix adjustment procedure we

L

used presupposes a knowledge of the efficient cost of operations and this
is reflected in the results shown in both columns (B) and (C) in Table 3.

Normally these costs will not be known and so we may count the apparently

e
R R

favorable results of these ratio analyses as proceeding from an assumed

knowledge that will generally not be available. This knowledge is not

required by DEA and hence we may regard it as being superior to the ratio
analysis in these respects as well as in other respects that we shall begin

to examine after first summarizing some of our other findings to this point .

as follows:

1. Ratio (cost) analysis and regression analysis required an
arbitrary rule to determine which DMUs would be designated as
inefficient. With ratio analysis, the mean might well have been
lower or higher depending on whether there were more or fewer
efficient units in the data set. Similarly, regression analysis
might also have a lower or higher cost curve depending on the
relative number of inefficient units.

2. Ratio analysis, &  did regression analysis, required price data
and other adjustments to address the multiple output and input
situation while DEA could address this situation directly. In
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addition, the ratios would be confounded if DMUs paid different

L L et

prices for similar inputs. For example, a DMU that had very low

prices might have a lower average cost that could obscure the

presence of technical (production) inefficiencies. Regression -

analysis also assumed DMUs had the same costs/input, and different -

unit input costs would have shifted the cost function and could v

thereby also conceal inefficiencies. -
-
[

3. Regression analysis results depended on the selection of an
appropriate model or set of cost relationships and nothing in the N
data set suggested that either of the choices were not appropriate. y
DEA, however, required no such assumptions.

There are other points that can also be made as we move beyond mere
classification into identifying the particular inputs where inefficiencies
occur and estimating their amounts. This will be dealt with in the sections

that follow.
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Table 3

Comparison of DEA, ratio analysis, and linear regression approaches
ability to locate Inefficient DMU's

E = DMU rated as efficient
1 = DMU rated as inefficient
(A) (8) (C) (D)
Case Mix Adjusted
. Average .
Efficient DMU's Rels)E?ts“) §2§%§s§§’ Cost/Patient (3 ?ggg§§3;331(:s))
H1 E E E E
H2 E E E 1
H3 E E E E
H4 E E E E
HS E E E E
H6 E E E 1
H7 E E I
Inefficient DMU's
H8 I 1 1 1
H9 I E E I
H10 E I 1 I
H1 I E 1 E
H12 I E I E
H13 E E E E
H14 1 E I E
H15 1 I I I

(1) From table 1

(2) From table 2 column B - DMUs with cost/patient greater than one standard
deviation above the mean used to identify inefficient DMUs.

(3) From Table 2 columns C and D with cost/patient greater than one standard
deviation above the mean used to identify inefficient DMUs.

(4) Based on rule that DMUs with actua) total cost greater than estimated total
cost (based on the regression model) are inefficient.
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8. Extensions
Perhaps the easiest approach to the topic of identifying the sources

and estimating the amounts of inefficiency present in each DMU is to

begin with a specific example. We therefore begin with H15 as an

o,
Al 2 &8

illustration of these kinds of additional uses of DEA. This hospital, which

L )
R

i

is inefficient, has already been discussed in association with Hl in

Exhibit 3. We now approach it in a different manner as follows.

,
- -

*
First consider the value of ho = 0.87 in Table 1. Here we shall use

19
ass

this value to obtain the results shown in the column labelled "Intensity Adjusted

« T voa, .
* PR A )
-

Value" 4n Table 4. Because slack values also need to be considered in

assessing efficiency we may refer to these h; values as "intensity factors"
and use them in the manner of the h: = 0.87 value that is applied to each
of the inputs in Table 4. The value which is then obtained in the case of
H15 can then be compared with the corresponding value shown under the

column labelled "True Efficiency Value". The latter are the values of the
inputs actually needed for the outputs of H15 with efficient operations, as

obtained from the efficient coefficient values provided in Exhibit 1. The
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maximum discrepancy of $(139,200-130,000)= $9,200 or, approximately, 7%

TR YT )

" occurs in the case of Supply $. The other DEA estimates resulting from

the intensity adjustment factor applied to the observed inputs are within

|

2% and 0.3%, respectively, of the true efficiency values.

TABLE 4
H15 INTENSITY ADJUSTMENT AND EFFICIENCY VALUE

Adjusted Input Values Efficient Input Values
Adjustments
Observed Intensity Intensity True
Input  Adjustment Adjusted Teach Efficiency
Value Factor Value Reaular Severe Units Value
FTE: 26.5 x 0.87 = 23.055 .C04 x 3,000 + .005 x 2,000 +.03 x 50 = 23.5

Bed Days: 47,370 x 0.87 41,211.9 | (7 x 3,000 + 9 x 2,000) + 0.95* = 41,052

SUPPLY $: 160,000 x 0.87 = 139,200 20 x 3,000 + 30 x 2,000 + 200 x 50 =130,000

*0.95 = vacancy factor for efficient production. See assumption
(a) in Exhibit 1.

PSRRI
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Evidently our h: value has operational significance in that it
indicates "amounts" of inefficiency that are present. It thus differs
from the index numbers and like approaches that are sometimes used for
efficiency ratings. See, e. g., the index constructed by Feldstein [18]
for use in the case of British hospitals.

As indicated earlier, the presence of slack in an optimal tableau is

also to be considered a source of inefficiency, and these data, too,

- 0
P

o,

Lo

‘l are available from the simplex tableaus. In particular, the slack value

for Supplies in the optimal solution amounts to $11,880 and 955 Bed Days

Cod

of slack are also present. When these amounts are subtracted from the

9 Intensity Adjusted Values in rows 3 and 2 of Table 4 new estimates for

.i efficient inputs in these factors become $127,313 and 40,257 BD, respectively.

- . ,
sy ‘J’L'Au";":

- This greatly improves the efficiency estimate of the former

- along with some worsenihg of the latter. All estimates are now within about

2% of the true efficiency value.
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It is not contended that DEA efficiency estimates will always be this
close and, indeed, reference to Table 5 will show estimates that are very
wide of the mark for HI0 in at least 2 of the 3 pertinent input categories.
On the other hand, even in this case the estimates are both better and more
detailed than those obtained from the ratio and regression approaches
discussed earlier in this article. Alsc, as was observed in our discussion
of Table 1, there are strong reasons to suspect the ho* = 1 intensity
values for HI10 and H13. Elimination of these two hospitals still leaves
H11 with errors in the range of 10-15% for three of the input estimates, while all
of the other errors are in a range of about at 2% or less. Furthermore
this record is considerably improved when the efficient hospitals, H1 to H7,
are added to the 1ist since in their case the estimates all have zerc errors.

This seems to be a very creditable performance, at least ccimpared to
what the other approaches appear to offer for use on the data base we
have erected. Further testing will also be required both on other data bases
and in actual uses, of rourse, and improvements in the methodology and
alternate modeling approaches and estimation methods will also need to be
explored.

Methods by which such testing might be done will be discussed in the
next section. We can then conclude this section by noting that still other
uses of DEA are also possible. For instance, what we have been doing in
this section amounts to projecting each DMU onto the relevant position of

the efficiency surface in conformance with the methods prescribed in [13].

Further tradeoffs may then be effected by reference to the marginal rates

* *
of transformation and/or substitution via the optimal U and Vi values 5
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which may be secured from the simplex tableaus. See (6). These values can
provide guidance for augmenting or contracting the inputs and outputs of
the corresponding DMU and, at the same time, provide controls and guidance

on efficient uses by the managers of these DMus.
*

*
These u. and V5

values will represent estimates which, of course, may
not be wholly accurate. The same is true of the similar uses of regression
estimates but, in addition, such regression estimates can be expected to be
very wide of the efficiency values--as should be clear from our earlier
discussions. Indeed, as noted in [2], the estimates of such substitution
and transformation rates generally continue to be very far from the true
efficiency values even when the simple forms of regression functions used
in the present article are replaced by more general and flexible forms and
when the statistical methods used are specifically directed.toward frontier

efficiency estimates.
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ESTIMATED AND TRUE EFFICIENCY VALUES

TABLE 5

H8 to H 15
INTENSITY ESTIMATED TRUE
HOSPITAL OBSERVED ADJUSTED EFFIC. EFFIC. %
INPUTS - VALUE VALUE SLACK VAL UE VALUE DIFF.
FTE 25.0 24.75 -- 24.75 25.0 1.0
H8  BD 49,475 48,980 8,425 40,555 41,053 1.2
$S 140,000 - 138,600 -- 138,600 140,000 1.0
FTE 24.5 24.01 - 4§4é0; 24.5 2.0
H9  BD 43,160 42,297 -- ]36»79 43,158 1.9
$S 165,000 161,700 25,000 »700 140,000 2.8
FTE 77.0 77.0 -- 77.0 53.0 45.0
H10  BD 92,630 92,630 -- 92,630 92,632 0.0
$S  — 340,000 340,000 .- 340,000 280,000 21.4
FTE 44.5 37.8 5.1 32.7 36.5 10.4
H11  BD 65,260 55,471 - 55,471 65,263 15.0
$S 265,000 225,250 45,711 179,539 200,000 10.2
FTE 30.0 29.7 -- 29.7 30.0 1.0
H12  BD 60,000 59,400 9,476 49,924 50,526 1.2
$S 170,000 168, 300 --  168.300 170,000 1.0
FTE 43.5 43.5 - 43.5 43.5 0.0
H13  BD 81,110 81,110 81,110 76,842 5.6
$s 245,000 245,000 245,000 240,000 2.1
FTE 30.0 29.7 -- 29.7 30.0 .0
H14  BD 60,000 59,400 9,476 49,924 50,526 1.2
$S 170,000 168,300 -- 168.300 170,000 1.0
FTE 26.5 23.06 -- 23.06 23.5 1.9
H15 BD 47,370 41,212 40,256 41,053 1.9
$S 160,000 139,200 11,887 127,313 130,000 2.1
Note: H10 and H13 have intensity values of ho* = 1.

.....
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9. Conclusion

The really surprising result is not how well DEA performed on our
manufactured data base, but rather the poor performance of the econometric-
statistical models we employed. %hese models are representative of many
analyses that have been employed in studies used to draw important policy
conclusions. Two recent multi-million dollar studies of this kind that
resulted in multi-volume reports with important findings for policy
formation are: (1) U.S. Department of Health, Education and Wel‘are,

PSRO: An Initial Evaluation of the Professional Standards Review

Organization [in Health Care De]ivery]l/ and (2) U.S. Office of Edu ation,

The Follow Through Planned Variation Experiment [for Education of

Disadvantaged Children].%/

The questions rajsed by our across-DMU regression results would seem
to apply a fortiori to studies like these since in our case the design of
the data base was favorable to assumptions such as a common technology and
a common price structure across the DMUs. Assumptions like these are much
less likely to be valid for regressions used in applied studies, such as the
kinds we just cited.
It might be argued that it is unfair to level criticisms such as these
at regression models designed to handle only one dependent variable at a
time and using methods of estimation directed toward average rather than
efficient behavior.gj In the study [2], which we conducted with R. Banker and

A. Maindiratta, however, both of these qualifications were accommodated.

1/ See [32]. See also [17] for further discussion and suggestions for
alternative approaches.

2/ See [33 ]. See also [12] for further discussion and suggested alternative
approaches.

3/ Note, however, the study by Feldstein [18] which was conducted in just*
this manner and numerous other studies of this type can also be cited.
See also the study by Banker, Conrad and Strauss [ 4] which consisted of
a DEA redo of a previously conducted econometric study of North Carolina
hospitals (using a translog function) and arrived at drastically different
conclusions on the presence of returns to scale, etc., which hac been
found not to be present in the original (econometric) study.
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In that study, conducted in the same spirit as the one we are presently
summarizing, a piecewise Cobb-Douglas function with one output as the dependent
variable was used to represent a continuous technology with increasing and
decreasing returns to scale in its various segments. Technical as well as
scale inefficiencies were then introduced into randomly generated observations
as a basis for comparing DEA with sa-called flexible functional form
approaches using translog regressions. DEA again performed very well but,
perhaps even more importantly, the statistical-econometric approaches
performed poorly--not only relative to DEA but also in a manner that was
unsatisfactory per se--in both technical and scale efficiency identification
and estimation. Moreover, the estimation methods employed for the regressions
in this case were of the so-called "corrected least squares" varieties, as
specifically designed for the purpose of locating and estimating efficiency
frontiers. See [26] and [19].

One possible source of trouble, we think, lies not merely in the
estimation methods but rather in an approach--the one that is commonly taught
and employed--which triés io capture a great variety of behaviors iq only
relatively smooth and simple (e. g., unconstrained) functional forms.

Attempts to meet fhese difficulties by weighted regressions, outlier analyses
and similar approaches do not really deal with the problem in a sufficiently
fundamental way, we think, and other alternatives need to begin to be
considered.

The optimizations involved in these DEA and statistical approaches
also need to be considered. Generally speaking the commonly employed
statistical approaches optimize over all observations while DEA optimizes
relative to each. Another way of stating this is to note that a complete

DEA 2.alysis will, in general, involve n optimizations, one for each
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observation, while the usual statistical approach involves only one.
This implies that differences in testing for results and checking
for possible inferences must also be expected.- Because it is directed
toward individual observations, DEA is also directed to each DMU in a
way which suggests this as a fundamental unit of test. That is, the

inferences that are made about at least some of these DMUs can and should

be tested by on-site observations in ways,and with results, that differ
from testing statistical estimates for general types of class properties

ii effected across all observations.

- Having identified these differences and their possible separate

avenues of application, testing and research, we can probably best close

Ei on a somewhat different note by indicating ways in which the two approaches

;: might be joined together. One possibility is to use each approach,

- regression or ratio analysis and DEA, to check on or fortify the other.l/

ii Other possibilities exist, however, which might briefly be sketched as follows.

o Aigner and Chu in [1], essayed a new approach to frontier estimation

w2/

by means of what would now be called "goal programming with only one-

sided deviations permitted so that, in general, the estimated production

function (e. g., a Cobb-Douglas form) would lie on or above all of the

observed output values. Confining all deviations to one side clearly does

not exhaust the possibilities, however, and one may go on to prescribing

proportions of the total deviations or even deviations for individual

observations that must lie on one side or the other of an estimated frontier.
In a similar spirit, C. P. Timmer in [30] used “chance constrained

programming” formulations and concepts to effect efficiency estimates.

1/ See [12] for further discussion on different conditions which might lead
to one approach or the other in complementary fashion for policy guidance
purposes

2/ This was originally referred to as "inequality constrained regressions."

T See [10] and [8]. Although not available at the time of the Aigner-Chu
work [1] we would now add the further possibilities that are now available
from the goal interval programming approaches described in [9].
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Instead of utilizing the power of chance constrained programming, e. g. to
deal with different proportions and even different probability distributions,
constraint by constraint, Timmer proceeded in an entirely different direction
and in the spirit of a "global” statistical analysis discarded "outlier"
obseryations one after another until he achieved what he regarded as "stable"
estimates. Notice, however, that this procedure is one which obliterates a
great deal of information. In particular, in pursuit of one global (overall)
property,l/ it discards efficient DMUs without even bothering to investigate
them individually.

The approaches by Aigner and Chu [1] and by Timmer [30] that we have
just described involve a use of inequality constrained optimizations, to
be sure, but they otherwise proceeded in the spirit of classical statistical
approaches. Something more may also be accomplished along these latter
lines. For instance, one might use a discriminant-function or cluster-
analytic approach to locate subsets of the original points which have
different properties. Hopefully this could include clusters or discriminant
subsets of efficient ard inefficient points. Separate regressions fitted
to these subsets might then yield improved ways of identifying inefficiencies
and estimating their amounts.

We have not investigated the latter types of topics, as we shall do
in future papers, for the simple reason that we sought to adhere as closely
as possible to the kinds of approaches that have generally been used in the
kinds of studies we have been considering. Notice that a use of the
discriminant and/or cluster analysis approaches we have just described

involves an estimation of more than one regression relation and more than one

l/ This is contrary to the spirit of individual observation
investigation that we urged, above, and for which the kind of stability
analysis provided in [113 is now available.
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optimization. The other approaches of global programming and chance

constrained programming varieties, as in Aigner and Chu [1] and Timmer [30],
involve inequality constrained relations of a ﬁind that are similar to the
ones used in DEA. Thus, we conclude that there are additional avenues of
possible relations between DEA and these other approaches that also invite

exploration.
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Exhibit ) 4 dppendix - \_
v Structural Model {(Efficient Hospital Operations) .\
. Efficient Input-Output and Cost Relationships Assumed in the
' .
L. Hospital Production Model to Creata ‘
AN the Simulated Data Base {n Exhibit 2 . . ,.~
o : 1
b Amount of each Input n.oa:»non to Efficiently produce one unit . Efficient Costs K
r of output. ) of Outputs y
-, - s n e . e 4 e e e - - e e T e e e e o] e e e 6 b e e o e e
P, ,
N Full Time Equivalents - Bed days "Supply $'s m.
“ Qutputss of Labor (FTE's) avallable i
T. * ® W wo e we ovie s wee -o..o'l.'cc .o cnlt!‘.ﬂ-- ew e cammne savemPo v sund -.lt'.ll!m b
s Regular Patient ' " : o~
Care .004 FTE/per ! 7 beddays/per | $20 supplies/per o1 $130/regular (1) ~ /
patient . patient i patient _ patient .
: : : '
} Severe Patient . . " . a
Care .005 FTE/per . 9 beddays/per ! $30 supplies/per ! $170/severe (2) p
patient . patient patient ; patient ..u
Training ; ; x__
outputs .03 FTE/per { - :  $200. supplies/per i $500/tcaining (3) i
- training unit H H training unit 1 unit A.._
- Input § Costs for all Hospitals ;
& FTE's Beddays Sunply's ._,
r... . .
b $10,000/FTE $10/Bed day $1/Supply unit . o
1
“ Other Assumptions; .“
L 8) Vacancy Rate - Efficient hospitals will have (1} Cost/regular patient » (.004 FTE/patient) (510,000/ ,_
.. 5% of total beds vacant ﬁ__clso the year * FTE 4 (7 bed days/patient) ($10/bed day) + N
- (avatlable for emergencles). ($20 supplies/patient = $130/patient ;
ﬁ . b} There are no regicnal cost diffsrences for bed (2) Cost/scvere patient = (.005 FTE/patient) ($10,000/ .”
- . days, supplies. and FTE's and that the mix FTC) + (9 bed days/patient) ($10/bed day) ¢ ’
= of FTE's and supplies are similar between (530 supplies/pationt) = $170/patient ,
b, - hospitals. . .
L . (3) Cost/training unit = (.03 FTE/training unit) ($10,000/ .
¢) Cost of unused bed days = $10/bed day. FTE) ¢ ($200 supplics/training unit) = $500/ i
. i patient
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Constructed Data Base

U « Inefficient uaa of toputs cowpared to a structural model of efficient input-output relationship descrided in Ex. |}
f Inpute — - Outputs Actual Inputs Used
PIE Bed daye Supply § Training
w Bed Supply ._.o:_.- 4 mn<.: Teach. Reg. Sev, Reg. Sev. Reg. Sev. Reg. Sev, Supply Vacancy
b ErE  Days _ §'s Pat.s _Pat.s  Units Pat.s Pat.s | Pat.s Pat.s| Pat.s» Pat.sj Par.s Pat.s $'s_ ETE| Rate
mc 1y () ()] {4) (5) (6) (2) 8 ' (9 (10) (11) (12) (13) (14) {15) (16) (1) -
Hl  23.5 41050 §110,000 5000 40 50 3000 2000 .004  .005 7 9 20 30 2000 .03 .05 =
“ M2 24.5 43160 140,000 5000 60 50 2000 3000 .004  .005 7 9 20 30 200 .03 .03
M) 26.0 43:60 150,000 5000 60 100 2000 3000  .004  .005 7 9 20 30 200 © .03 .03
W6 25.0 41050 140,000 5000 40 100 3000 2000  .004  .005 7 9 20 30 200 .03 .05
- M5 28,5 50530 160,000 (OGO 50 SO 3000 3000  .004 - .005 9 20 30 200 , .03 .05
” H6  36.0 62105 210,000 7000 1 100 2000 5000  .004 <005 7 9 20 30 200 .03 .05
W2 51.5 92630 270,000 12000 12 50 10000 2000  .004  .005 7 9 20 30 200 .03 .05
v_ N8 25.0 49475 140,000 5000 14 100 3000 2000 .004 005 (9 )30 20 30 200 .03 .05
” M9 24.5 43160 165,000 5000 60 50 2000 3000  .004  .005 7 9 () (G5 200 .03 .05
- H10 77.0 92630 340,000 12000 17 100 jouc0 2000 (Cuoe) (ooD) 7 9 () (35D 120 .03 .05
v NIl 44.5 65260 265,000 8000 38 s0 5000 3000 Cons) Cooe) 7 9 () (5D 00 .03 .05
2 N2 30.0 60000 170,000 6000 50 100 3000 3000  .004  .005 ) 9 20 30 200 .03 )
M1} 43.5 81110 245,000 9000 56 ' SO 4000 5000  .004  .005 7 9 20 o o) CosCin)
M4 30.0 60000 170,000 6000 s0 00 3000 3000 .006 .005 C3D) 9 20 30 200 .03 Cuo
M1S 26.5 42370 160,000 5000 40 so 3000 2000 Cow) 005 (9D 9 () w 20 .03 .05
* Total Fatients = Col. 7 + Col. 8 Note: Outputs (Col.s 4 - 8) and input =uowo (Col.e 9 - 17) are arbitrarily
8 I Scvere » Col. 8 ¢ Col. 4 asstigned 8o that UL - W7 are efficient bascd on the production rodel

in Ex. 1 and U8 ~ H15 are ineffictent based on the sam: sodel. Inputs
(Col. 1, 2, 3) avre derived from Col.s & - 17 as indicated in Ex. )
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Exhibit 3

. Appendix

Example of Constructfon of Data Base for Hospitals H1 (efffcient) and H15 (inefficient)

Inputs Required for
Cach Unit of the Related Output

Difference Vacancy
Hi H1S Betwecen FIE/yr. Bed days/yr, Supply $'a/yrx. n’%anu muwwaa
Efffctent’  Inefficfent Hl and H13 1 H15 Hl 1S 1 H1S . _Rl x:u
Outputn (1dentical for Hl and H15)
v, Regular patients/yr, 3000 3000 - 004 ¢ .005 7 ¢ 2 $20 ¢ $30
L Sevore patients/yy, 2000 2000 - ,005 = .CO5 9 = 9 30 « 3 5T 52
v, Tecaching units/yr, o - 50 - .0} = .03 - - 200 = 200

(outputs are identlcal for Hl and H13)

Total {nputs Required
¥1€ 23.5(¥ 26.5¢8)

an0s0(® 41,0209
s130.00003)  3160,000¢%

Bed days

Cupplics

$775,5000??  s898,700'®

[ ] .
Vacancy rato rotlccts tha Vv of vacant beds that
¢4

In aftlclent hospitals (S8 are vacant).

b}
6,320
$30,000

$123,200

() pTis = (3000 Res. Pat.)(.006) + (2000 Sev. Fat.)(.005) + (50 Teach. Unita)(.03) = 23.3

(3 y1-ned days = 1(3000 Reg. Pat.)(7) + (2000 Sev.
(4)y15-8c4 days = [(3000 Reg. Par!)(9) + (2000 Sev. Pat.)(9)] ¢ (.95 Vacancy factor) = 45,000 ¢ .95 = 47,368

() ) supply §°s = (3000 Rey. Pac.)(20) + (2000 Sev. Par.)(30) 4 (50 Tench. Units)(200) = $130,000

:v:;-‘—.:“.- e (3000 Reg. Pat.)(.003) + (2000 Sev. Pat.){ .005) '+ (50 Teach. Units){ .03) = 26.5

AS.:ucz:.:_.: $'s = (J0UO Nug. Pat.)(30) + (2000 Scv, Pat.)(30) + (50 Tcach, Unitz)(200) = $160,000

(M Ji-Toiul Cont = (23.5 FIE)($§10,000/FTE) + (41,050 Bud days x 3§

n:v:_vc._‘::: oyt = (26.5 FIE)(3W0,0007FTI) (47,308 Bad duyn = $1/hed dny) # $100,000 Suppl§

exist. Beds availoble to exceed the number usod by n\.ow
7 beds aro used, 7/.95 must be avallable-on average
during the yoaar,

Pat.)(9)] ¢ (.93 Vacancy factor) = 39,000 ¢ .95 = 41,050

10/hed day) + $130,000 Supplicw = $173,500
o = $H98, 700
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